Architecture sécurisées Notion d'architectures

E. Leblond¹

¹INL SARL

Module sécurité, Intech'info

Outline

- Introduction
- Élément de réseau
 - Principes
 - Attaques classiques
- Architectures sécurisées
 - Historique et état de l'art
 - Problématiques diverses
 - Tendances et perspectives

E. Leblond Autobiographie

- Concepteur et développeur principal de NuFW
- Contributeur Netfilter
- Fondateur et co-gérant d'INL

E. Leblond Autobiographie

- Concepteur et développeur principal de NuFW
- Contributeur Netfilter
- Fondateur et co-gérant d'INL

E. Leblond Autobiographie

- Concepteur et développeur principal de NuFW
- Contributeur Netfilter
- Fondateur et co-gérant d'INL

Outline

- Introduction
- Élément de réseau
 - Principes
 - Attaques classiques
- Architectures sécurisées
 - Historique et état de l'art
 - Problématiques diverses
 - Tendances et perspectives

Modèle OSI L'effet oignon

C'est le schéma classique de décomposition du réseau :

- Une décomposition en couche
- Du physique à l'application
- Basée sur l'encapsulation et fragmentation

Intérêt pratique notamment au niveau du développement.

Décomposition du modèle OSI

- Couche physique : 100base-TX, Wireless
- Couche de liaison : Ethernet, ATM, TokenRing, Wi-Fi
- Couche de réseau : ARP, IPv4, IPv6
- Couche de transport : TCP, UDP, ICMP, SCTP
- Ouche de session : L2TP, PPTP, RPC
- Couche de présentation : Unicode, MIME, HTML, XML
- Couche application : SSH, NNTP, DNS, HTTP

Ethernet

Le protocole de tous les jours

- Solution à bas coût et haute performance
 - Connecteur et concentrateur bon marché
 - Gamme très variée
- Atteint des bandes passantes élevées (de 10M à 10G)
- Filaire ou WiFi
- Switch de paquets

Ethernet

Décomposition d'un datagramme ethernet

0	31
+-	+-+-+
Adresse Ethernet de destination (32 1ers bits)	1
+-	+-+-+-+
Dest (16 derniers bits) Source (16 1ers bits)	1
+-	+-+-+-+
Adresse Ethernet source (32 derniers bits)	1
+-	+-+-+-+
Type de protocole	1
+-	+-+-+-+
En-tête IP, puis en-tête TCP, puis vos données	
	1

	1
fin de vos données	1
+-	+-+-+
Checksum Ethernet	1
+-	+

Ethernet

- La destination d'abord pour l'optimisation
- Le datagramme contient toutes les informations nécessaires au routage
- La taille du datagramme est variable et est limitée par le médium physique:
 - 1500 bytes : la norme et le chiffre à retenir
 - 9000 bytes : jumbo frame

Ethernet Principe

- Adresse MAC des cartes, identifiant unique
- Communication par adresse MAC
- Mécanisme d'annonce

Ethernet ARP

Recherche correspondance IP<->Adresse Mac:

```
arp who-has 192.168.1.128 tell 192.168.1.2 arp reply 192.168.1.128 is-at 00:0c:f1:5c:47:91
```

Ethernet ARP

Basé sur la confiance et donc soumis à de nombreuses attaques. Cette couche n'offre aucune sécurité.

- arp-spoofing
- arp-poisonning

Introduction à TCP/IP

- Famille de protocoles incontournables
- Beaucoup plus complexe qu'il n'y parait
- Coexistence avec les autres piles et les RFCs
 - Contournement des bugs
 - Violation des RFC

Principe

- Architecture du datagramme semblable à Ethernet
- Espace d'adresses de 32bit
- Construit pour l'encapsulation

Le paquet IPv4 Propriétés notables

- Taille variable
- Mécanisme de fragmentation
- Protocole de contrôle icmp
 - Vérification de connectivité : ping
 - Mécanisme d'information : reject
 - Indication de routage : redirect

IP

Décomposition du datagramme

+	Bits 0 - 3	4 - 7	8 - 15	16 - 18	19 - 31		
0	Version	Header length	Type of Service (now DiffServ and ECN)	Total Length			
32		Identifi	cation	Flags	Fragment Offset		
64	Time t	o Live	Protocol	Header Checksum			
96	Source Address Destination Address						
128							
160	Options						
160/192+	Data						

IP / Exemple de fragmentation

Ping de 1500 sur un lien à MTU 400

```
IP (tos 0x0, ttl 64, id 5503, offset 0, flags [+], proto: ICMP (1), length: 396) 127.0.0.1
> 127.0.0.1: ICMP echo request, id 49167, seq 1, length 376
IP (tos 0x0, ttl 64, id 5503, offset 376, flags [+], proto: ICMP (1), length: 396) 127.0.0.1
> 127.0.0.1: icmp
IP (tos 0x0, ttl 64, id 5503, offset 752, flags [+], proto: ICMP (1), length: 396) 127.0.0.1
> 127.0.0.1: icmp
IP (tos 0x0, ttl 64, id 5503, offset 1128, flags [none], proto: ICMP (1), length: 400) 127.0
> 127.0.0.1: icmp
IP (tos 0x0, ttl 64, id 5504, offset 0, flags [+], proto: ICMP (1), length: 396) 127.0.0.1
> 127.0.0.1: ICMP echo reply, id 49167, seg 1, length 376
IP (tos 0x0, ttl 64, id 5504, offset 376, flags [+], proto: ICMP (1), length: 396) 127.0.0.1
> 127.0.0.1: icmp
IP (tos 0x0, ttl 64, id 5504, offset 752, flags [+], proto: ICMP (1), length: 396) 127.0.0.1
> 127.0.0.1: icmp
IP (tos 0x0, ttl 64, id 5504, offset 1128, flags [none], proto: ICMP (1), length: 400) 127.0
> 127.0.0.1: icmp
```

Routage Principe générique

- Directives de direction
 - Réseau segmenté
 - Comment atteindre une destination ?
 - Passerelle pour le réseau
- Routage : du plus spécifique au plus général

Routage Exemple de table de routage

Table de routage IP du noyau								
	Destination	Passerelle	Genmask	Indic	Metric	Ref	Use	Iface
	192.168.1.0	0.0.0.0	255.255.255.0	U	0	0	0	eth1
	192.168.0.0	192.168.1.2	255.255.255.0	UG	0	0	0	eth1
	0.0.0.0	192.168.1.254	0.0.0.0	UG	0	0	0	eth1

- En charge de la résolution des noms
- Mécanisme de cascade :
 - Décomposition des noms : home.regit.org
 - Serveur root
 - Serveur
- Des enregistrements différents
 - A : adresse
 - CNAME : alias
 - TXT : divers usages
 - ...
- UDP port 53 (et TCP port 53)

- En charge de la résolution des noms
- Mécanisme de cascade :
 - Décomposition des noms : home.regit.org
 - Serveur root
 - Serveur
- Des enregistrements différents
 - A : adresse
 - CNAME : alias
 - TXT : divers usages
 - ...
- UDP port 53 (et TCP port 53)

- Protocole d'échange des mails entrant
- Repose sur le principe des MXs :
 - Liste de serveurs supportant le relayage
 - Le serveur de poids le plus faible prime
 - Chaque relais essaye de relayer au MX de poids plus faible
- Protocole simple avec échange en ascii

Envoi d'un mail en telnet :

```
telnet "IP" smtp
HELO "domaine"
250 OK
MAIL From : <"foo@debian.org">
250 OK - mail from
RCPT To : <"email@cible">
250 OK - Recipient <"email@cible">
DATA
354 Send data. End with CRLF.CRLF
blablah
```

- Le protocole !
- Repose sur un système de requêtes
 - GET : Récupération d'objet
 - POST : Envoi de formulaires
 - Autres : webdav
- Intimement lié aux entrées DNS textuelles
- Support de plusieurs sites sur un même IP
- Encapsule un grand nombre de protocoles :
 - XML-RPC
 - Web Services
- TCP port 80 (port 8080)
- HTTPS: encapsulation SSL

- Le protocole!
- Repose sur un système de requêtes
 - GET : Récupération d'objet
 - POST : Envoi de formulaires
 - Autres : webdav
- Intimement lié aux entrées DNS textuelles
- Support de plusieurs sites sur un même IP
- Encapsule un grand nombre de protocoles :
 - XML-RPC
 - Web Services
- TCP port 80 (port 8080)
- HTTPS : encapsulation SSL

• Requête:

```
GET http://www.commentcamarche.net HTTP/1.0
Accept : text/html
If-Modified-Since : Saturday, 15-January-2000 14:37:11 GMT
User-Agent : Mozilla/4.0 (compatible; MSIE 5.0; Windows 95)
```

Réponse :

```
HTTP/1.0 200 OK
Date : Sat, 15 Jan 2000 14:37:12 GMT
Server : Microsoft-IIS/2.0
Content-Type : text/HTML
Content-Length : 1245
Last-Modified : Fri, 14 Jan 2000 08:25:13 GMT
```

Outline

- Introduction
- Élément de réseau
 - Principes
 - Attaques classiques
- Architectures sécurisées
 - Historique et état de l'art
 - Problématiques diverses
 - Tendances et perspectives

Arp spoofing

- La relation MAC<->IP est basée sur la confiance
- Prise en main d'une IP sur le réseau
 - Annonces en rafale
 - Sûr de polluer le cache des machines du réseau
 - Communication du poste visé impossible

Arp poisonning

- Deni de service :
 - Envoi d'arp reply faux
 - Pollution des caches ARP
 - Déstabilisation du réseau
- arpwatch : monitoring et alerting sur comportement anormal

Arp poisonning

- Deni de service :
 - Envoi d'arp reply faux
 - Pollution des caches ARP
 - Déstabilisation du réseau
- arpwatch : monitoring et alerting sur comportement anormal

Man in the middle

- Le trafic entre deux machines passent par plusieurs points
- Le contenu des échanges peut être connus par un intermédiaire
- Il peut aussi être modifié
- C'est vrai pour les protocoles cryptés au démarrage

Man in the middle

- Le trafic entre deux machines passent par plusieurs points
- Le contenu des échanges peut être connus par un intermédiaire
- Il peut aussi être modifié
- C'est vrai pour les protocoles cryptés au démarrage

Man in the middle Confiance ...

- Le trafic entre deux machines passent par plusieurs points
- Le contenu des échanges peut être connus par un intermédiaire
- Il peut aussi être modifié
- C'est vrai pour les protocoles cryptés au démarrage

Man in the middle

- Le trafic entre deux machines passent par plusieurs points
- Le contenu des échanges peut être connus par un intermédiaire
- Il peut aussi être modifié
- C'est vrai pour les protocoles cryptés au démarrage

DNS spoofing

- Réponse DNS falsifiée
- 2 Requête protocolaire dirigée vers une machine attaquante
- Exploitation :
 - Récupération d'informations (phishing)
 - Injection de données corrompues (windows update)

Outline

- Introduction
- Élément de réseau
 - Principes
 - Attaques classiques
- 3 Architectures sécurisées
 - Historique et état de l'art
 - Problématiques diverses
 - Tendances et perspectives

- Le réseau des pionniers
- En mode routage pur
- Protection des services par tcp-wrapper
 - Contrôle de l'accès au niveau userland
 - liste d'accès contrôlée sur la machine

- Le réseau des pionniers
- En mode routage pur
- Protection des services par tcp-wrapper
 - Contrôle de l'accès au niveau userland
 - liste d'accès contrôlée sur la machine

Cas du grand public

- Cas des backbone opérateurs
 - Accessibilité
 - Protocole BGP
 - Peu sécurisé
 - Écroulement en cascade
 - AS7007: Coupure d'internet en 1997

- Cas du grand public
- Cas des backbone opérateurs
 - Accessibilité
 - Protocole BGP
 - Peu sécurisé
 - Écroulement en cascade
 - AS7007 : Coupure d'internet en 1997

- Cas du grand public
- Cas des backbone opérateurs
 - Accessibilité
 - Protocole BGP
 - Peu sécurisé
 - Écroulement en cascade
 - AS7007 : Coupure d'internet en 1997

- Cas du grand public
- Cas des backbone opérateurs
 - Accessibilité
 - Protocole BGP
 - Peu sécurisé
 - Écroulement en cascade
 - AS7007 : Coupure d'internet en 1997

Phase 2 Cloisonnement

- Centralisation du filtrage
 - Éparpillement des mesures de protections dangereux
 - Responsabilité et rôles variés des intervenants
 - Plus efficace et exhaustif : DROP par défaut
- Transformation des routeurs en filtre
 - Mise en place de contrôle d'accès à l'entrée des réseaux
 - Isolation des réseaux internes

Filtrage IP

- Filtre de paquets
 - Par rapport au contenu
 - Jeu de régles linéaire
 - Gestion des allers retours
- Implémentations :
 - Routeurs/pare-feu
 - Switchs niveau 3

- Pénurie d'adresse : 232 c'est peu
- Dépôt de classes d'adresses privées
- Le routeur de sortie masque les adresses
- Nécessité de maintenir une table
 - Analyse du paquet retour
 - Réécriture de l'adresse source
- Limitations:
 - 65535 ports pour une adresse
 - Gestion des protocoles complexes

- Pénurie d'adresse : 232 c'est peu
- Dépôt de classes d'adresses privées
- Le routeur de sortie masque les adresses
- Nécessité de maintenir une table
 - Analyse du paquet retour
 - Réécriture de l'adresse source
- Limitations:
 - 65535 ports pour une adresse
 - Gestion des protocoles complexes

- Pénurie d'adresse : 232 c'est peu
- Dépôt de classes d'adresses privées
- Le routeur de sortie masque les adresses
- Nécessité de maintenir une table
 - Analyse du paquet retour
 - Réécriture de l'adresse source
- Limitations:
 - 65535 ports pour une adresse
 - Gestion des protocoles complexes

- Pénurie d'adresse : 232 c'est peu
- Dépôt de classes d'adresses privées
- Le routeur de sortie masque les adresses
- Nécessité de maintenir une table
 - Analyse du paquet retour
 - Réécriture de l'adresse source
- Limitations:
 - 65535 ports pour une adresse
 - Gestion des protocoles complexes

- Pénurie d'adresse : 2³² c'est peu
- Dépôt de classes d'adresses privées
- Le routeur de sortie masque les adresses
- Nécessité de maintenir une table
 - Analyse du paquet retour
 - Réécriture de l'adresse source
- Limitations:
 - 65535 ports pour une adresse
 - Gestion des protocoles complexes

- Pénurie d'adresse : 2³² c'est peu
- Dépôt de classes d'adresses privées
- Le routeur de sortie masque les adresses
- Nécessité de maintenir une table
 - Analyse du paquet retour
 - Réécriture de l'adresse source
- Limitations:
 - 65535 ports pour une adresse
 - Gestion des protocoles complexes

- Pénurie d'adresse : une c'est peu
- Redirection des services de l'IP publique vers d'autres serveurs
- Conforme au principe de séparation des services
- Modification de la visibilité sur le réseau
- Attention aux abus :
 - Accès direct aux machines internes depuis l'extérieur
 - Prise de contrôle possibles des machines cibles

- Pénurie d'adresse : une c'est peu
- Redirection des services de l'IP publique vers d'autres serveurs
- Conforme au principe de séparation des services
- Modification de la visibilité sur le réseau
- Attention aux abus :
 - Accès direct aux machines internes depuis l'extérieur
 - Prise de contrôle possibles des machines cibles

Suivi de connexions

- Ajout de la notion de session
 - Maintien d'une table des connexions
 - Filtrage des paquets suivant l'état de leur connexion relative
 - Plus besoin de spécifier les allers retours
- Renforcement de la sécurité
 - On autorise un vrai retour
 - Plus de contournements possible
- Meilleure efficacité

Phase 3 Architecture n-tiers

- Limitation des accès directs aux ressources
- Découpage fonctionnel
 - Internet
 - DMZ
 - User
- Raffinement :
 - Zone serveur
 - Zone WiFi

Phase 3 Architecture n-tiers

- Limitation des accès directs aux ressources
- Découpage fonctionnel
 - Internet
 - DMZ
 - User
- Raffinement :
 - Zone serveur
 - Zone WiFi

Phase 3 Architecture n-tiers

- Limitation des accès directs aux ressources
- Découpage fonctionnel
 - Internet
 - DMZ
 - User
- Raffinement :
 - Zone serveur
 - Zone WiFi

Avantages

- Séparation des réseaux :
 - Attaque basée sur IP impossible
 - Possibilité de contenir une surcharge réseau
- Contrôle des accès
- Limitation des propagations virales

Protection des données

- Problématique de la publication
 - Mettre à disposition des partenaires des données sensibles
 - Accès depuis internet aux données vitales ?
- Quelques solutions :
 - Contrôle d'accès fin aux ressources internes
 - Contrôle d'accès des bases de données
 - Réplication partielle des données

Protection des données

- Problématique de la publication
 - Mettre à disposition des partenaires des données sensibles
 - Accès depuis internet aux données vitales ?
- Quelques solutions :
 - Contrôle d'accès fin aux ressources internes
 - Contrôle d'accès des bases de données
 - Réplication partielle des données

Protection des données

- Problématique de la publication
 - Mettre à disposition des partenaires des données sensibles
 - Accès depuis internet aux données vitales ?
- Quelques solutions :
 - Contrôle d'accès fin aux ressources internes
 - Contrôle d'accès des bases de données
 - Réplication partielle des données

Phase 4

Rupture des flux sortants

- Le danger vient de l'extérieur
- Connexion directe :
 - Toujours à double sens
 - Attaque et prise de contrôle
- Méthode de contournement :
 - Tunneling
 - port 80 ne veut pas dire HTTP

Rupture des flux sortants Cas de HTTP

- Serveur mandataire
 - Gestion du cache
 - Validation du protocole
 - QoS sur les flux
- Contrôle d'accès :
 - Support du protocole HTTP 1.1
 - Filtrage par site
 - Analyse des logs fines

Rupture des flux sortants Cas de HTTP

- Serveur mandataire
 - Gestion du cache
 - Validation du protocole
 - QoS sur les flux
- Contrôle d'accès :
 - Support du protocole HTTP 1.1
 - Filtrage par site
 - Analyse des logs fines

Phase 5

Rupture des flux entrants

- Les ressources internes doivent être protégées
 - Un serveur de mail héberge des données confidentielles
 - Il ne doit pas être accédé en direct
 - L'intermédiaire permet de masquer l'architecture interne
- Un contrôle des flux avant accès est souhaitable
 - Conformité protocolaire
 - Filtrage d'accès

Phase 5

Rupture des flux entrants

- Les ressources internes doivent être protégées
 - Un serveur de mail héberge des données confidentielles
 - Il ne doit pas être accédé en direct
 - L'intermédiaire permet de masquer l'architecture interne
- Un contrôle des flux avant accès est souhaitable
 - Conformité protocolaire
 - Filtrage d'accès

Rupture des flux entrants Cas de SMTP

- Mise en place d'un relai vers l'interne
 - Permet de s'ajuster à l'architecture interne
 - Point de contrôle central
- Tâches de vérification :
 - liste de domaines supportés
 - Antivirus
 - Greylisting
 - Vérification des adresses destinataires

Rupture des flux entrants Cas de SMTP

- Mise en place d'un relai vers l'interne
 - Permet de s'ajuster à l'architecture interne
 - Point de contrôle central
- Tâches de vérification :
 - liste de domaines supportés
 - Antivirus
 - Greylisting
 - Vérification des adresses destinataires

Rupture des flux entrants Cas de HTTP

- Reverse Proxy :
 - Serveur frontal
 - Possibilité de cache
 - Répartition de charge
- Reverse proxy filtrant :
 - Validation des URLs
 - Bloquage des requêtes non conformes
 - Utilisation d'une base de signatures

Outline

- Introduction
- Élément de réseau
 - Principes
 - Attaques classiques
- Architectures sécurisées
 - Historique et état de l'art
 - Problématiques diverses
 - Tendances et perspectives

Connexions de sites distants

- Liaisons louées
 - Connexions point à point entre les sites
 - Dépassé et trop cher
- IPsec
 - Établissement d'un tunnel entre deux passerelles
 - Visibilité directe des réseaux privés
 - Encryption des échanges
 - Protocole ratifié IETF
- MPLS
 - Isolation sur la backbone opérateur
 - Pas d'encryption
 - Facile à mettre en oeuvre

Connexions de sites distants

- Liaisons louées
 - Connexions point à point entre les sites
 - Dépassé et trop cher
- IPsec
 - Établissement d'un tunnel entre deux passerelles
 - Visibilité directe des réseaux privés
 - Encryption des échanges
 - Protocole ratifié IETF
- MPLS
 - Isolation sur la backbone opérateur
 - Pas d'encryption
 - Facile à mettre en oeuvre

Connexions de sites distants

- Liaisons louées
 - Connexions point à point entre les sites
 - Dépassé et trop cher
- IPsec
 - Établissement d'un tunnel entre deux passerelles
 - Visibilité directe des réseaux privés
 - Encryption des échanges
 - Protocole ratifié IETF
- MPLS
 - Isolation sur la backbone opérateur
 - Pas d'encryption
 - Facile à mettre en oeuvre

La mobilité Accès distant

- Ipsec
 - Connexion Road-warrior
 - Complexité du client
- OpenVPN
 - Plus léger
 - Passage des proxy
- VPN-SSL
 - Sans client
 - Version Web 2.0 du VPN

Défense passive Protection du réseau interne

- IDS
 - analyse des flux
 - remontée d'alerte
- Honey Pot
 - Simulation de machine vulnérable
 - Découverte de nouvelles attaques
 - Détournement des pirates des vraies cibles

- Écoute des trames réseaux
- Analyse sur base de signature

```
alert udp $EXTERNAL_NET any -> $SQL_SERVERS any (msg:"MS-SQL probe \
response overflow attempt";
content:"|05|"; depth:1; byte_test:2,>,512,1; content:"|3B|"; \
distance:0; isdataat:512,relative;\
content:!"|3B|"; within:512; reference:bugtraq,9407; reference:cve,2003-0903; \
reference:url,www.microsoft.com/technet/security/bulletin/MS04-003.mspx;\
classtype:attempted-user; sid:2329; rev:6;)
```

Analyse comportementale

- Performance
 - Analyse complexe
 - Surcharge CPU
- Fragmentation
 - Découpage du protocole IP (niveau 3)
 - Découpage du protocole (niveau 7)
 - Exemples: RPC
 - Reconstruction nécessaire à tous les niveaux

- Performance
 - Analyse complexe
 - Surcharge CPU
- Fragmentation
 - Découpage du protocole IP (niveau 3)
 - Découpage du protocole (niveau 7)
 - Exemples: RPC
 - Reconstruction nécessaire à tous les niveaux

IDS Difficulté

- Performance
 - Analyse complexe
 - Surcharge CPU
- Fragmentation
 - Découpage du protocole IP (niveau 3)
 - Découpage du protocole (niveau 7)
 - Exemples: RPC
 - Reconstruction nécessaire à tous les niveaux

Outline

- Introduction
- Élément de réseau
 - Principes
 - Attaques classiques
- Architectures sécurisées
 - Historique et état de l'art
 - Problématiques diverses
 - Tendances et perspectives

Analyse protocolaire pare-feu niveau 7

- Analyse des protocoles
- Vérification de conformité
 - Décomposition du début des paquets
 - Découverte du protocole
 - Bloquage si non conformité
- Méthode d'échappement
 - Encapsulation respectueuse : nstx
 - Dissimulation d'information dans le protocole

Analyse protocolaire

- Antivirus de flux
- Difficulté d'équilibrage
 - Faux positifs deviennent dangereux
 - Problématiques de la performance

Le poste client

Protection du réseau interne

- Contrôle des accès
 - Introduction des machines sur le réseau (802.1x)
 - Validation des identités (NuFW)
- Vérification des postes
 - Isolation au niveau du switch
 - Vérification du poste par un agent
 - Problème de confiance

Le poste client

Protection du réseau interne

- Contrôle des accès
 - Introduction des machines sur le réseau (802.1x)
 - Validation des identités (NuFW)
- Vérification des postes
 - Isolation au niveau du switch
 - Vérification du poste par un agent
 - Problème de confiance

Le poste client

Protection du réseau interne

- Contrôle des accès
 - Introduction des machines sur le réseau (802.1x)
 - Validation des identités (NuFW)
- Vérification des postes
 - Isolation au niveau du switch
 - Vérification du poste par un agent
 - Problème de confiance

Le poste client Protection du réseau interne

Contrôle des accès

- Introduction des machines sur le réseau (802.1x)
- Validation des identités (NuFW)
- Vérification des postes
 - Isolation au niveau du switch
 - Vérification du poste par un agent
 - Problème de confiance

Fin du cloisonnement?

Un monde trop dangereux

- Attaque sur les protocoles de haut niveau
- Problèmes des postes mobiles
 - Contamination externe
 - Réinjection dans le réseau interne
- Arrivée d'IPV6
 - Globalisation des adresses
 - IPV6 mobile

Fin du cloisonnement ?

Un monde trop dangereux

- Attaque sur les protocoles de haut niveau
- Problèmes des postes mobiles
 - Contamination externe
 - Réinjection dans le réseau interne
- Arrivée d'IPV6
 - Globalisation des adresses
 - IPV6 mobile