
Secure use of iptables and connection tracking
helpers

Authors: Eric Leblond, Pablo Neira Ayuso, Patrick McHardy, Jan Engelhardt, Mr
Dash Four

Introduction

Principle of helpers
Some protocols use different flows for signaling and data transfers. This is the case
for FTP, SIP and H.323 among many others. In the setup stage, it is common that the
signaling flow is used to negotiate the configuration parameters for the establishment
of the data flow, i.e. the IP address and port that are used to establish the data flow.
These sort of protocols are particularly harder to filter by firewalls since they violate
layering by introducing OSI layer 3/4 parameters in the OSI layer 7.

In order to overcome this situation in the iptables firewall, Netfilter provides the
Connection Tracking helpers, which are modules that are able to assist the firewall in
tracking these protocols. These helpers create the so-called expectations, as defined by
the Netfilter project jargon. An expectation is similar to a connection tracking entry,
but it is stored in a separate table and generally with a limited duration. Expectations
are used to signal the kernel that in the coming seconds, if a packet with corresponding
parameters reaches the firewall, then this packet is RELATED to the previous connec-
tion.

These kind of packets can then be authorized thanks to modules like state or con-
ntrack which can match RELATED packets.

This system relies on parsing of data coming either from the user or the server. It
is therefore vulnerable to attack and great care must be taken when using connection
tracking helpers.

Connection Tracking helpers default configuration
Due to protocol constraints, not all helpers are equal. For example, the FTP helper will
create an expectation whose IP parameters are the two peers. The IRC helper creates
expectations whose destination address is the client address and source address is any
address. This is due to the protocol: we do not know the IP address of the person who
is the target of the DCC.

The degree of freedom due to connection tracking helpers are therefore dependent
on the nature of the protocol. Some protocols have dangerous extensions, and these are
disabled by default by Netfilter. The user has to pass an option during loading of the
module to enable this dangerous protocol features. For example, the FTP protocol can

1

let the user choose to have the target server connect to another arbitrary server. This
could lead to a hole in the DMZ and it is therefore deactivated by default. To enable it,
you’ve got to pass the loose option with the 1 value.

The following list describes the different connection tracking helper modules and
their associated degree of freedom:

Module Source
address

Source
Port

Destination
address

Destination
port

Protocol Option

amanda Fixed 0-
65535

Fixed In CMD TCP

ftp Fixed 0-
65535

In CMD In CMD TCP loose = 0 (default)

ftp Full 0-
65535

In CMD In CMD TCP loose = 1

h323 Fixed 0-
65535

Fixed In CMD UDP

h323
q931

Fixed 0-
65535

In CMD In CMD UDP

irc Full 0-
65535

Fixed In CMD TCP

netbios_ns Iface Net-
work

Fixed Fixed Fixed UDP

pptp Fixed In
CMD

Fixed In CMD GRE

sane Fixed 0-
65535

Fixed In CMD TCP

sip
rtp_rtcp

Fixed 0-
65535

Fixed In CMD UDP sip_direct_media = 1
(default)

sip
rtp_rtcp

Full 0-
65535

In CMD In CMD UDP sip_direct_media = 0

sip sig-
nalling

Fixed 0-
65535

Fixed In CMD In
CMD

sip_direct_signalling =
1 (default)

sip sig-
nalling

Full 0-
65535

In CMD In CMD In
CMD

sip_direct_signalling =
0

tftp Fixed 0-
65535

Fixed In Packet UDP

The following keywords are used:

∙ Fixed: Value of a connection tracking attribute is used. This is not a
candidate for forgery.

∙ In CMD: Value is fetched from the payload. This is a candidate for
forgery.

The options are module loading options. They permit activation of the extended
but dangerous features of some protocols.

2

Secure use of Connection Tracking Helpers
Following the preceding remarks, it appears that it is necessary to not blindly use
helpers. You must take into account the topology of your network when setting pa-
rameters linked to a helper.

For each helper, you must carefully open the RELATED flow. All iptables state-
ments using “-m conntrack --ctstate RELATED” should be used in conjunction with
the choice of a helper and of IP parameters. By doing that, you will be able to describe
how the helper must be used with respect to your network and information system
architecture.

Example: FTP helper
For example, if you run an FTP server, you can setup

iptables -A FORWARD -m conntrack --ctstate RELATED -m helper \
--helper ftp -d $MY_FTP_SERVER -p tcp \
--dport 1024: -j ACCEPT

If your clients are authorized to access FTP outside of your network, you can add

iptables -A FORWARD -m conntrack --ctstate RELATED -m helper \
--helper ftp -o $OUT_IFACE -p tcp \
--dport 1024: -j ACCEPT

iptables -A FORWARD -m conntrack --ctstate RELATED -m helper \
--helper ftp -i $OUT_IFACE -p tcp \
--dport 1024: -j ACCEPT

The same syntax applies to IPV6

ip6tables -A FORWARD -m conntrack --ctstate RELATED -m helper \
--helper ftp -o $OUT_IFACE -p tcp \
--dport 1024: -j ACCEPT

ip6tables -A FORWARD -m conntrack --ctstate RELATED -m helper \
--helper ftp -i $OUT_IFACE -p tcp \
--dport 1024: -j ACCEPT

Example: SIP helper
You should limit the RELATED connection due to the SIP helper by restricting the
destination address to the RTP server farm of your provider

iptables -A FORWARD -m conntrack --ctstate RELATED -m helper \
--helper sip -d $ISP_RTP_SERVER -p udp -j ACCEPT

Example: h323 helper
The issue is the same as the one described for SIP, you should limit the opening of the
RELATED connection to the RTP server addresses of your VOIP provider.

3

Securing the signaling flow
You will also need to build carefully crafted rules for the authorization of flows involv-
ing connection tracking helpers. In particular, you have to do strict anti-spoofing (as
described below) to avoid traffic injection from other interfaces.

Using the CT target to refine security

Introduction
One classic problem with helpers is the fact that helpers listen on predefined ports. If
a service does not run on standard port, it is necessary to declare it. Before 2.6.34,
the only method to do so was to use a module option. This was resulting in having a
systematic parsing of the added port by the chosen helper. This was clearly suboptimal
and the CT target has been introduced in 2.6.34. It allows to specify what helper to use
for a specific flow. For example, let’s say we have a FTP server on IP address 1.2.3.4
running on port 2121.

To declare it, we can simply do

iptables -A PREROUTING -t raw -p tcp --dport 2121 \
-d 1.2.3.4 -j CT --helper ftp

Therefore, the use of the module options is NOT recommended anymore - please
use the CT target instead.

Disable helper by default
Principle

Once a helper is loaded, it will treat packets for a given port and all IP addresses. As
explained before, this is not optimal and is even a security risk. A better solution is to
load the module helper and deactivate their parsing by default. Each helper we need to
use is then set by using a call to the CT target.

Method

Since Linux 3.5, it is possible to desactivate the automatic conntrack helper assignment.
This can be done when loading the nf_conntrack module

modprobe nf_conntrack nf_conntrack_helper=0

This can also be done after the module is loading by using a /proc entry

echo 0 > /proc/sys/net/netfilter/nf_conntrack_helper

Please note that flows that already got a helper will keep using it even if automatic
helper assignment has been disabled.

For older kernel, it is possible to obtain this behavior for most connection tracking
helper modules by setting the port number for the module to 0. For example

modprobe nf_conntrack_$PROTO ports=0

By doing this, the following modules will be deactivated on all flows by default:

4

∙ ftp

∙ irc

∙ sane

∙ sip

∙ tftp

Due to the absence of a “ports” parameter, some modules will not work:

∙ amanda

∙ h323

∙ netbios_ns

∙ pptp

∙ snmp

Please note, this will cause a renaming of the conntrack helper which will be named
$PROTO-0. The CT rules must then be updated to reflect this change. For example, if
the option has been used for the ftp helper, one should use

iptables -A PREROUTING -t raw -p tcp --dport 21 \
-d 2.3.4.5 -j CT --helper ftp-0

Anti-spoofing

Helpers and anti-spoofing
Helpers rely on the parsing of data that come from client or from server. Therefore, it
is important to limit spoofing attacks that could be used to feed the helpers with forged
data. Helpers are IP only and are not doing, as the rest of the connection tracking, any
coherence check on the network architecture.

Using rpfilter module
A rpfilter Netfilter module is available since Linux 3.3 and iptables 1.4.13. It provides
a convenient match that can be used to detect invalid packets. To use it on IPv6 and
IPv4, one can for example use

iptables -A PREROUTING -t raw -m rpfilter --invert -j DROP
ip6tables -A PREROUTING -t raw -m rpfilter --invert -j DROP

Using rp_filter
Linux provides a routing-based implementation of reverse path filtering. This is avail-
able for IPv4. To activate it, you need to ensure that /proc/sys/net/ipv4/conf/*/rp_filter
files contain 1. Complete documentation about rp_filter is available in the file ip-
sysctl.txt in the Documentation/networking/ directory of the Linux tree.

The documentation at the time of the writing is reproduced here

5

rp_filter - INTEGER
0 - No source validation.
1 - Strict mode as defined in RFC3704 Strict

Reverse Path. Each incoming packet is
tested against the FIB and if the interface
is not the best reverse path the packet
check will fail. By default, failed packets
are discarded.

2 - Loose mode as defined in RFC3704 Loose
Reverse Path. Each incoming packet’s source
address is also tested against the FIB
and if the source address is not reachable
via any interface, the packet check will fail.

Current recommended practice in RFC3704 is to
enable strict mode to prevent IP spoofing from
DDos attacks. If using asymmetric routing
or other complicated routing, then loose mode
is recommended.

The max value from conf/{all,interface}/rp_filter
is used when doing source validation on the
{interface}.

Default value is 0. Note that some distributions
enable it in startup scripts.

At the time of the writing, there is no routing-based implementation of rp_filter
in the Linux kernel for IPv6, therefore manual anti-spoofing via Netfilter rules is thus
needed.

Manual anti-spoofing
The best way to do anti-spoofing is to use filtering rules in the RAW table. This has the
great advantage of bypassing the connection tracking and helps to reduce the load that
could be created by some flooding.

Anti-spoofing must be done on a per-interface basis. For each interface, we must
list the authorized network on the interface. There is an exception, which is the in-
terface with the default route where an inverted logic must be used. In our example,
let’s take eth1, which is a LAN interface, and have eth0 being the interface with the
default route. Let’s also have $NET_ETH1 being the network connected to $ETH1 and
$ROUTED_VIA_ETH1 a network routed by this interface. With this setup, we can do
anti-spoofing with the following rules

iptables -A PREROUTING -t raw -i eth0 -s $NET_ETH1 -j DROP
iptables -A PREROUTING -t raw -i eth0 -s $ROUTED_VIA_ETH1 -j DROP
iptables -A PREROUTING -t raw -i eth1 -s $NET_ETH1 -j ACCEPT
iptables -A PREROUTING -t raw -i eth1 -s $ROUTED_VIA_ETH1 -j ACCEPT
iptables -A PREROUTING -t raw -i eth1 -j DROP

6

The IPv6 case is similar if we omit the case of the local link network

ip6tables -A PREROUTING -t raw -i eth0 -s $NET_ETH1 -j DROP
ip6tables -A PREROUTING -t raw -i eth0 -s $ROUTED_VIA_ETH1 -j DROP
ip6tables -A PREROUTING -t raw -s fe80::/64 -j ACCEPT
ip6tables -A PREROUTING -t raw -i eth1 -s $NET_ETH1 -j ACCEPT
ip6tables -A PREROUTING -t raw -i eth1 -s $ROUTED_VIA_ETH1 -j ACCEPT

7

	Introduction
	Principle of helpers
	Connection Tracking helpers default configuration

	Secure use of Connection Tracking Helpers
	Example: FTP helper
	Example: SIP helper
	Example: h323 helper
	Securing the signaling flow

	Using the CT target to refine security
	Introduction
	Disable helper by default
	Principle
	Method

	Anti-spoofing
	Helpers and anti-spoofing
	Using rpfilter module
	Using rp_filter
	Manual anti-spoofing

